Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways.
نویسندگان
چکیده
Adult neocortical areas are characterized by marked differences in cytoarchitecture and connectivity that underlie their functional roles. The molecular determinants of these differences are largely unknown. We performed a microarray analysis to identify molecules that define the somatosensory and visual areas during the time when afferent and efferent projections are forming. We identified 122 molecules that are differentially expressed between the regions and confirmed by quantitative polymerase chain reaction 95% of the 20 genes tested. Two genes were chosen for further investigation: Bcl6 and Ten_m3. Bcl6 was highly expressed in the superficial cortical plate corresponding to developing layer IV of somatosensory cortex at postnatal day (P) 0. This had diminished by P3, but strong expression was found in layer V pyramidal cells by P7 and was maintained until adulthood. Retrograde tracing showed that Bcl6 is expressed in corticospinal neurons. Ten_m3 was expressed in a graded pattern within layer V of caudal cortex that corresponds well with visual cortex. Retrograde tracing and immunostaining showed that Ten_m3 is highly expressed along axonal tracts of projection neurons of the developing visual pathway. Overexpression demonstrated that Ten_m3 promotes homophilic adhesion and neurite outgrowth in vivo. This suggests an important role for Ten_m3 in the development of the visual pathway.
منابع مشابه
Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملDifferential genes expression analysis of invasive aspergillosis: a bioinformatics study based on mRNA/microRNA
Invasive aspergillosis is a severe opportunistic infection with high mortality in immunocompromised patients. Recently, the roles of microRNAs have been taken into consideration in the immune system and inflammatory responses. Using bioinformatics approaches, we aimed to study the microRNAs related to invasive aspergillosis to understand the molecular pathways involved in the disease pathogenes...
متن کاملFibroblast growth factor 8 organizes the neocortical area map and regulates sensory map topography.
The concept of an "organizer" is basic to embryology. An organizer is a portion of the embryo producing signals that lead to the creation of a patterned mature structure from an embryonic primordium. Fibroblast growth factor 8 (FGF8) is a morphogen that disperses from a rostromedial source in the neocortical primordium (NP), forms a rostral-to-caudal (R/C) gradient, and regulates embryonic and ...
متن کاملThalamic control of neocortical area formation in mice.
The mammalian neocortex undergoes dramatic transformation during development, from a seemingly homogenous sheet of neuroepithelial cells into a complex structure that is tangentially divided into discrete areas. This process is thought to be controlled by a combination of intrinsic patterning mechanisms within the cortex and afferent axonal projections from the thalamus. However, roles of thala...
متن کاملParaneoplastic Antigen-Like 5 Gene (PNMA5) Is Preferentially Expressed in the Association Areas in a Primate Specific Manner
To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2008